Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene CsLOB1 promoter in citrus

نویسندگان

  • Aihong Peng
  • Shanchun Chen
  • Tiangang Lei
  • Lanzhen Xu
  • Yongrui He
  • Liu Wu
  • Lixiao Yao
  • Xiuping Zou
چکیده

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is severely damaging to the global citrus industry. Targeted editing of host disease-susceptibility genes represents an interesting and potentially durable alternative in plant breeding for resistance. Here, we report improvement of citrus canker resistance through CRISPR/Cas9-targeted modification of the susceptibility gene CsLOB1 promoter in citrus. Wanjincheng orange (Citrus sinensis Osbeck) harbours at least three copies of the CsLOB1G allele and one copy of the CsLOB1- allele. The promoter of both alleles contains the effector binding element (EBEPthA4 ), which is recognized by the main effector PthA4 of Xcc to activate CsLOB1 expression to promote citrus canker development. Five pCas9/CsLOB1sgRNA constructs were designed to modify the EBEPthA4 of the CsLOB1 promoter in Wanjincheng orange. Among these constructs, mutation rates were 11.5%-64.7%. Homozygous mutants were generated directly from citrus explants. Sixteen lines that harboured EBEPthA4 modifications were identified from 38 mutant plants. Four mutation lines (S2-5, S2-6, S2-12 and S5-13), in which promoter editing disrupted CsLOB1 induction in response to Xcc infection, showed enhanced resistance to citrus canker compared with the wild type. No canker symptoms were observed in the S2-6 and S5-13 lines. Promoter editing of CsLOB1G alone was sufficient to enhance citrus canker resistance in Wanjincheng orange. Deletion of the entire EBEPthA4 sequence from both CsLOB1 alleles conferred a high degree of resistance to citrus canker. The results demonstrate that CRISPR/Cas9-mediated promoter editing of CsLOB1 is an efficient strategy for generation of canker-resistant citrus cultivars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker

Citrus is a highly valued tree crop worldwide, while, at the same time, citrus production faces many biotic challenges, including bacterial canker and Huanglongbing (HLB). Breeding for disease-resistant varieties is the most efficient and sustainable approach to control plant diseases. Traditional breeding of citrus varieties is challenging due to multiple limitations, including polyploidy, pol...

متن کامل

فناوری ویرایش ژن کریسپر ـ کَس 9 از منظر حقوق مالکیت فکری و ایمنی زیستی

In recent years, inexpensive and fruitful gene editing techniques such as CRISPR-Cas9 and NaAgo have revolutionized the biotechnology industry. Genetically edited organisms, gene therapy, treatment of diseases such as AIDS and editing human cells are some of the marvelous applications of such technologies. Using such technologies in large scale or granting exclusive rights on their products or ...

متن کامل

Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease.

Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL e...

متن کامل

Generation of Gene-Edited Chrysanthemum morifolium Using Multicopy Transgenes as Targets and Markers.

The most widely used gene editing technology-the CRISPR/Cas9 system-employs a bacterial monomeric DNA endonuclease known as clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) and single-guide RNA (sgRNA) that directs Cas9 to a complementary target DNA. However, introducing mutations into higher polyploid plant species, especially for species without g...

متن کامل

Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9

Objective(s): Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.Materials and Methods: I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017